


# **CO<sub>2</sub>-Abtrennung und Verwendung**

Prof. Dr. Thomas Bayer, AK WiTechWi

12. Mai 2021



### **Inhalt**

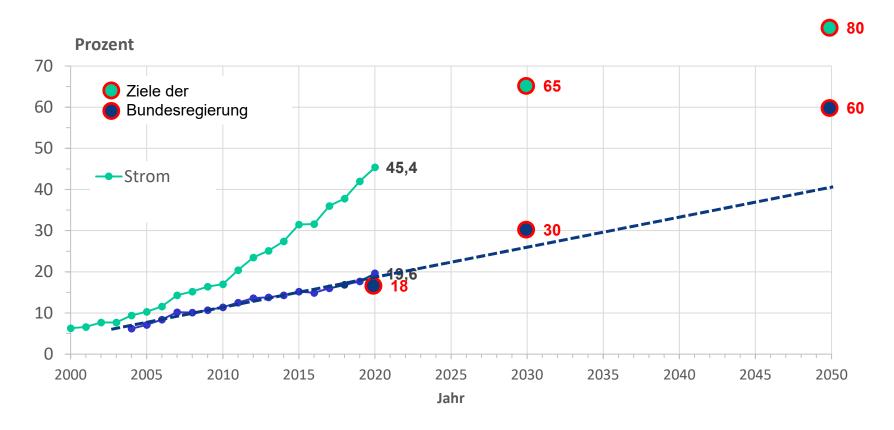



- Energieverbrauch und CO<sub>2</sub>-Emissionen Zahlen, Daten, Fakten
- Wobei entsteht in der Zukunft überhaupt noch CO<sub>2</sub>?
- Technische Verfahren zur CO<sub>2</sub>-Abtrennung
- CO<sub>2</sub>-Abscheidung und Speicherung (carbon capture & storage, CCS)
- CO<sub>2</sub>-Abscheidung und Verwendung (carbon capture and utilization, CCU)
- Kohlenstoffrecycling
- CO<sub>2</sub> als Rohstoff Verfahren und Herausforderungen



## Endenergieverbrauch

#### Entwicklung Deutschland 1990 bis 2018 nach Sektoren

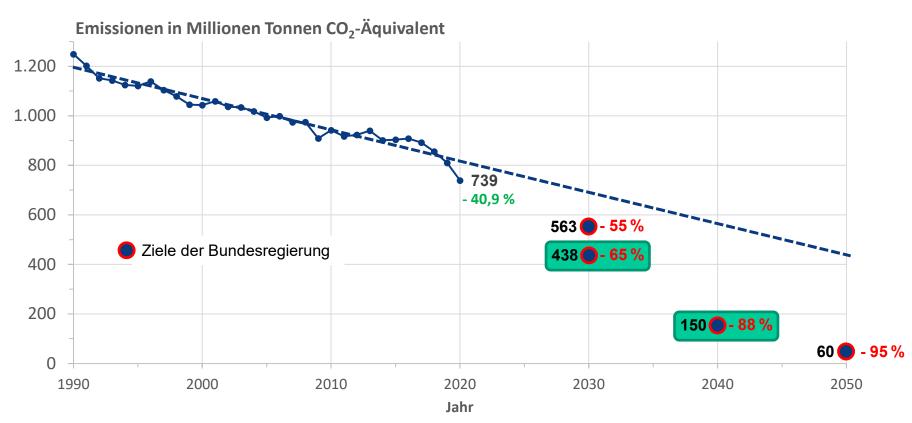



Quelle: Umweltbundesamt auf Basis AG Energiebilanzen, Stand 10/2019, 2018 vorläufig



### **Erneuerbare Energien**

#### Anteil Erneuerbare Energien 1990 bis 2018 Deutschland




Quelle: Umweltbundesamt auf Basis AG Energiebilanzen, Stand 02/2021

### WilechWi WilechWi

# Treibhausgasemissionen

#### Entwicklung 1990 bis 2020 Deutschland



**⇒** Weniger als eine Tonne Treibhausgase pro Kopf

Quellen: Statista, Umweltbundesamt, www.bundesregierung.de



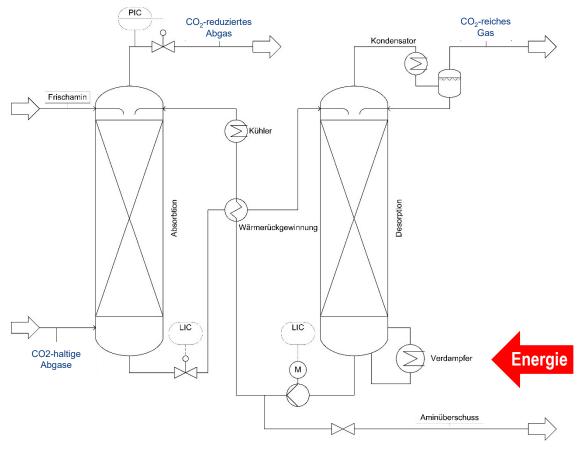
### Verbleibende THG-Emissionen

#### Deutschland 2050

- Ziel: 60.000.000 Tonnen CO<sub>2eq.</sub> verbleibende Emissionen
- Weitgehend aus der Landwirtschaft (Tierhaltung) und Zementherstellung
- "Der Ausgleich dieser verbleibenden Emissionen findet in Industrie und Energiewirtschaft statt, die CO₂ aus Biomasseanlagen und aus der Luft abscheiden."
- "Die CO₂-Ablagerung könnte dann in leeren Gasfeldern oder tiefen geologischen Formationen unter der Nordsee stattfinden (CCS)"

#### **⇒** Gesellschaftliche Akzeptanz?

- Und wenn wir die Ziele nicht erreichen?
- Und was ist mit der stofflichen Nutzung fossiler Energieträger?
  - ⇒ Technologien zur CO<sub>2</sub>-Nutzung sind wohl erforderlich!


Quelle: Klimaneutrales Deutschland, Öko-Institut, Nov. 2020 für Agora Energiewende

# CO<sub>2</sub>-Abscheidung



#### Technische Verfahren

- Adsorptionverfahren
- Absorptionsverfahren
  - Physikalische Verfahren
  - Chemische Verfahren
- Membranverfahren
- Kältetechnische Verfahren



**Aminwäsche** 

Quelle: wikipedia, modifiziert





### Großtechnische Industrieanwendungen für CO<sub>2</sub>-Abscheidung

| Projektname                                    | Land | Inbetrieb-<br>nahme | Anwendung                  | Abscheide-<br>menge [Mt/a] | Verfahren                |
|------------------------------------------------|------|---------------------|----------------------------|----------------------------|--------------------------|
| Enid fertilizer CO <sub>2</sub><br>EOR project | USA  | 1982                | Düngemittel                | 0,7                        | Chemische Absorption     |
| Great plains                                   | USA  | 2000                | SNG                        | 3                          | Physikalische Absorption |
| Air products                                   | USA  | 2013                | H <sub>2</sub> -Produktion | 1                          | Druckwechseladsorption   |
| Coffeyville Gasification                       | USA  | 2013                | Düngemittel                | 1                          | Physikalische Absorption |
| Quest                                          | CAN  | 2015                | H <sub>2</sub> -Produktion | 1                          | Chemische Absorption     |
| Abu Dhabi CCS project                          | VAE  | 2016                | Stahl und Eisen            | 0,8                        | Chemische Absorption     |
| Alberta ACTL                                   | CAN  | 2017                | Düngemittel                | 0,3 - 0,6                  | Chemische Absorption     |
| Alberta ACTL                                   | CAN  | 2017                | Raffinerie                 | 1,2 – 1,4                  | Physikalische Absorption |
| Illinois Industrial CCS                        | USA  | 2017                | Ethanolproduktion          | 1                          | Fermentation             |

#### ⇒ bei allen Anlagen wird das abgeschiedene CO<sub>2</sub> für die Erdölförderung genutzt

Quelle: Wuppertalinstitut Technologiebericht CCS 2017



## **Carbon Capture and Storage (CCS)**

#### CO<sub>2</sub>-Abtrennung und -Speicherung

- Gesetz zur Demonstration und Anwendung von Technologien zur Abscheidung, zum Transport und zur dauerhaften Speicherung von Kohlendioxid vom 17. August 2012 (Umsetzung der Richtlinie 2009/31/EG zur geologischen CO<sub>2</sub>-Speicherung)
- CCS-Gesetz bildet den Rechtsrahmen für die Erprobung und Demonstration der CCS-Technologie in Deutschland.
- Durch zeitliche und mengenmäßige Grenzen ist es auf Demonstrationsprojekte begrenzt. Die maximale Speichermenge pro Speicher beträgt 1,3 Millionen Tonnen CO<sub>2</sub> jährlich, deutschlandweit jährlich 4 Millionen Tonnen CO<sub>2</sub>.
- Die Länder haben mit der Länderklausel umfangreiche Kompetenzen zur Entscheidung über die Demonstration der CCS-Technologie auf ihrem Landesgebiet.
  - ⇒ Seit Inkrafttreten 2012 sind keinerlei Speicher (oder Leitungen) beantragt, genehmigt und gebaut worden.
  - **⇒** Politische und gesellschaftliche Akzeptanz fehlen

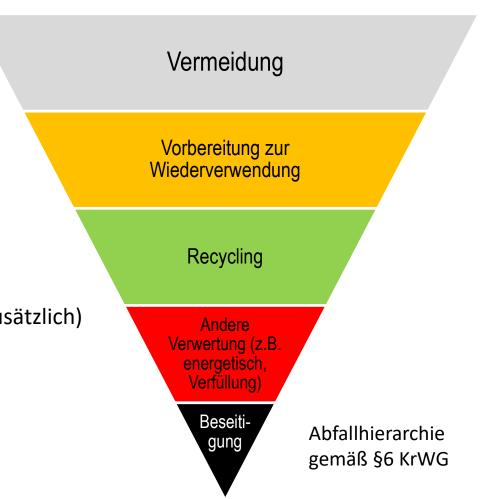
Quelle: Bundesministerium für Wirtschaft



## Carbon Capture and Use (CCU)

#### CO<sub>2</sub>-Abtrennung und -Nutzung

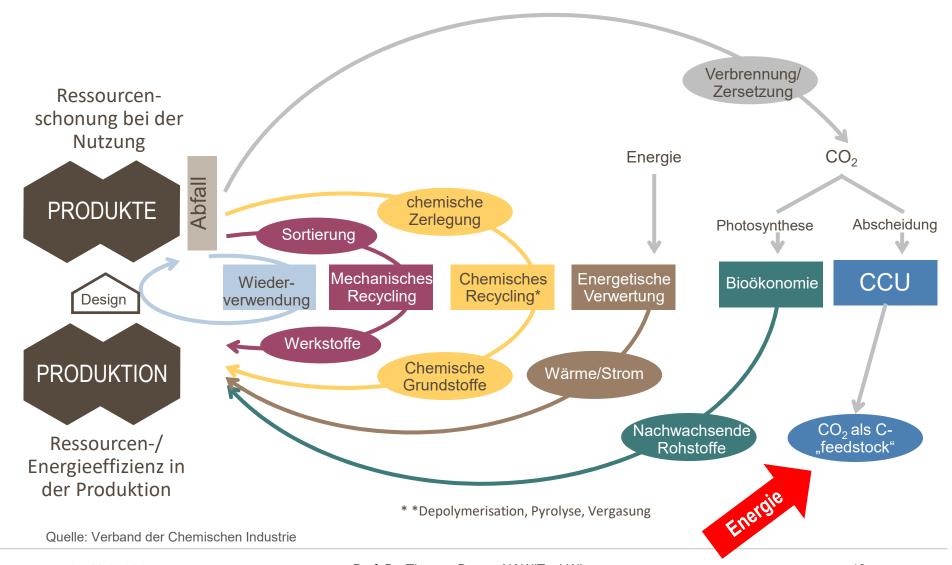
- CO<sub>2</sub> wird auch in Zukunft anfallen (z.B. Kalkherstellung)
- Auch die rohstoffliche Nutzung fossiler Energieträger muss berücksichtigt werden
- Die chemische Industrie verbraucht ca. 18,1 Mio. Tonnen pro Jahr fossiler Energieträger und 2,7 Mio. Tonnen nachwachsender Rohstoffe stofflich.
- Der stoffliche Verbrauch von Erdöl, Erdgas und Kohle entspricht ca. 15 Mio. Tonnen C oder 55 Mio. Tonnen CO<sub>2</sub> (wenn alle Produkte nach Gebrauch verbrannt würden)
- Wenn keine fossilen Rohstoffe mehr genutzt werden sollen, bleiben nur Biomasse und CO<sub>2</sub> als wesentliche Rohstoffquellen.
- Nachwachsende Rohstoffe werden schon eingesetzt, aber die Verfügbarkeit ist begrenzt.
- CO<sub>2</sub> könnte die neue Rohstoffquelle für die Chemie werden und die verbleibende CO<sub>2</sub>-Menge nutzen.


Quelle: Verband der Chemischen Industrie

# Recycling



#### Nutzung von Abfällen


- Müssen wir alles einfach wegwerfen?
- Kann man aus Abfällen Produkte herstellen?
- Nutzung von CO<sub>2</sub> als Rohstoff zur Herstellung von Chemieprodukten
- Dazu sind mind. 7 Mio. Tonnen
  Wasserstoff erforderlich
- Dies erfordert ca. 633 TWh EE-Strom (zusätzlich)



Quelle: Verband der Chemischen Industrie

### WiTechWi Mi<u>Tech</u>Mi

### Kohlenstoffkreisläufe





# Welche Verfahren gibt es?

### Herstellung von chemischen Stoffen aus CO<sub>2</sub>

| Chemischer<br>Rohstoff  | Verfahren                    | Reaktion                                                | Anwendung                                             |
|-------------------------|------------------------------|---------------------------------------------------------|-------------------------------------------------------|
| Methan                  | Methanisierung               | $CO_2 + 4 H_2 \rightarrow CH_4 + 2 H_2O$                | Chemische Zwischenprodukte (z.B. CH <sub>3</sub> Cl)  |
| Kohlen-<br>wasserstoffe | Fischer-Tropsch-<br>Synthese | $n CO_2 + 3n+1 H_2 \rightarrow C_n H_{2n+2} + 2n H_2 O$ | Synthetische Treibstoffe (z.B. Kerosin), Wachse, etc. |
| Methanol                | MeOH-Synthese                | $CO_2 + 4 H_2 \rightarrow CH_4 + H_2O$                  | Biodiesel, Kunststoffe, etc.                          |

## Herausforderungen



#### Energie- und Rohstoffbedarf

- Biomasse- und Abfallverfügbarkeit
- > 600 TWh erneuerbarer Strom
- ca. 7 Mio. t (grüner) Wasserstoff
- Infrastruktur

#### Zeitlich

- Physische Verfügbarkeit der Technologien (TRL 9): nicht vor 2030
- Wirtschaftlichkeit und Wettbewerbsfähigkeit: nicht vor Mitte bis Ende der 30er Jahre

#### Ökonomisch

- Günstige Strompreise (4 Cent/KWh) Günstiger Wasserstoff
- Hohe zusätzliche Investitionen
- Fehlender Markt für teurere Produkte, wenn Klimaschutz auf Europa beschränkt bleibt

Quelle: Verband der Chemischen Industrie

# Beispiel zur CO<sub>2</sub>-Nutzung



### Fischer-Tropsch-Synthese zur Herstellung von Kohlenwasserstoffen



Containerbasiere Versuchsanlage zur Herstellung von Weißölen und Wachsen aus aus CO<sub>2</sub> und H<sub>2</sub> für die chemische Industrie

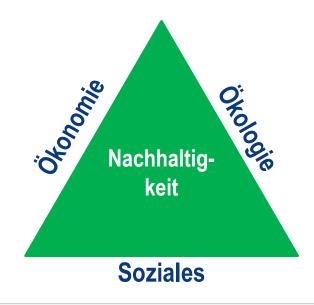













Containerbasierte Versuchsanlage mit mikrostrukturiertem Fischer-Tropsch-Reaktor

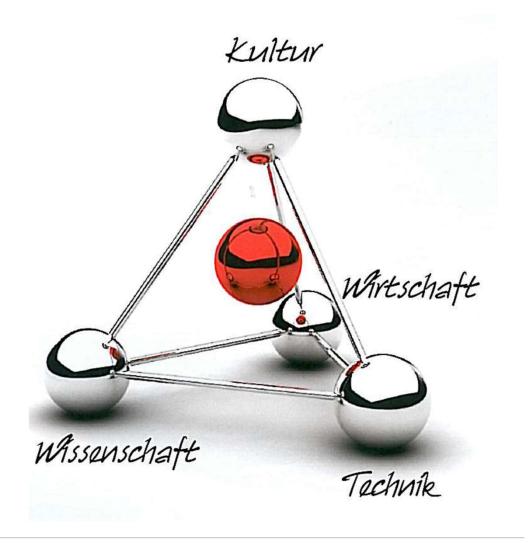
### **Fazit**



- Wir stehen vor einer gewaltigen Aufgaben, nicht nur in Deutschland sondern weltweit
- Politik und Industrie haben dies (hoffentlich!) erkannt und formulieren Ziele zur CO<sub>2</sub>-Neutralität bis 2050
- Der Weg zum Ziel ist aber nicht klar
- Die Transformation wird uns allen einiges abverlangen (nicht nur Geld!)



Quelle: Roth-Cartoons


⇒ Es bleibt nicht mehr viel Zeit, also packen wir es jetzt an!



## CO<sub>2</sub>-Abtrennung und Verwendung

Vielen Dank für Ihre Aufmerksamkeit

**Ihre Fragen?** 

